Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Onur Şahin,^a Çiğdem Albayrak,^b Mustafa Odabaşoğlu^b and Orhan Büyükgüngör^a*

^aDepartment of Physics, Ondokuz Mayis University, TR-55139 Samsun, Turkey, and ^bDepartment of Chemistry, Ondokuz Mayis University, TR-55139 Samsun, Turkey

Correspondence e-mail: onurs@omu.edu.tr

Key indicators

Single-crystal X-ray study T = 296 KMean $\sigma(\text{C-C}) = 0.004 \text{ Å}$ R factor = 0.055 wR factor = 0.149 Data-to-parameter ratio = 17.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(E)-5-(4-Chlorophenyldiazenyl)salicylaldehyde

The molecule of the title compound, $C_{13}H_9ClN_2O_2$, is approximately planar and displays a *trans* configuration with respect to the central N=N double bond. The dihedral angle between the two aromatic rings is 3.69 (14)°. The molecules are linked by intermolecular $O-H\cdots O$ hydrogen bonds, forming a two-dimensional network.

Received 23 September 2005 Accepted 9 November 2005 Online 16 November 2005

Comment

The extensive application of azo dyes in industry and in analytical determinations has attracted attention for decades. Some arylazo compounds derived from resorcinol or β -naphthol have been widely used in the spectrophotometric determination of traces of metals (Betteridge & John, 1973; Pollard *et al.*, 1959). Optically active azobenzene polymers are very important functional materials because of their photoresponsive properties.

Fig. 1 shows the structure of the title compound, (I), with the atom-numbering scheme. Selected bond distances and angles are listed in Table 1. In the azo group, the N1–C5 and N2–C8 bond lengths indicate significant single-bond character, whereas the N1=N2 bond length is indicative of significant double-bond character. The C7=O1 and C2–O2 bond lengths agree with the corresponding distances in 3-methoxy-5-(4-methylphenyldiazenyl)salicylaldehyde and 3-methoxy-5-(2-methylphenyldiazenyl)salicylaldehyde

[1.224 (2) and 1.350 (2) Å, respectively; Ersanli *et al.*, 2004].
Compound (I) consists of benzene rings A (C1–C6) and B (C8–C13), their substituents and the azo unit C (C5–

Figure 1

A view of (I), with the atom-numbering scheme and 50% probability displacement ellipsoids for non-H atoms. The intramolecular hydrogen bond is shown as a dashed line.

Printed in Great Britain - all rights reserved

© 2005 International Union of Crystallography

Figure 2

A packing diagram for (I), showing hydrogen bonds as dashed lines.

N1=N2-C8). Benzene rings A and B adopt a trans configuration about the azo functional group, as observed in the crystal structures of other previously studied azo compounds. In (I), dihedral angles are as follows: 3.69 $(14)^{\circ}$ between A and B, 3.4 (3)° between A and C, and 0.8 (3)° between B and C. Compound (I) also presents intramolecular O-H···O and weak intermolecular $O-H\cdots O$ hydrogen bonds (Table 2), forming a two-dimensional network (Fig. 2).

Experimental

The title compound was prepared according to the literature method of Odabaşoğlu et al. (2003), using p-chloroaniline and salicylaldehyde as starting materials. The product was crystallized from toluene to obtain well shaped crystals (yield 83%; m.p. 484-485 K).

Crystal data

$C_{13}H_9ClN_2O_2$	$D_x = 1.520 \text{ Mg m}^{-3}$
$M_r = 260.67$	Mo $K\alpha$ radiation
Monoclinic, P2 ₁	Cell parameters from 5345
a = 3.8486 (5) Å	reflections
b = 5.818 (1) Å	$\theta = 1.6-29.4^{\circ}$
c = 25.437 (4) Å	$\mu = 0.33 \text{ mm}^{-1}$
$\beta = 91.408 \ (12)^{\circ}$	T = 296 K
$V = 569.39 (15) \text{ Å}^3$	Plate, colourless
Z = 2	$0.50 \times 0.32 \times 0.03 \text{ mm}$
Data collection	
Stoe IPDS-2 diffractometer	2346 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.078$
Absorption correction: integration	$\theta_{\rm max} = 29.2^{\circ}$
(X-RED32; Stoe & Cie, 2002)	$h = -4 \rightarrow 5$
$T_{\min} = 0.882, \ T_{\max} = 0.990$	$k = -7 \rightarrow 7$
5538 measured reflections	$l = -34 \rightarrow 34$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0964P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.055$	where $P = (F_0^2 + 2F_c^2)/3$
$wR(F^2) = 0.149$	$(\Delta/\sigma)_{\rm max} < 0.001$
S = 0.98	$\Delta \rho_{\rm max} = 0.29 \text{ e } \text{\AA}^{-3}$
2974 reflections	$\Delta \rho_{\rm min} = -0.41 \text{ e } \text{\AA}^{-3}$
168 parameters	Extinction correction: SHELXL97
H atoms treated by a mixture of	Extinction coefficient: 0.046 (12)
independent and constrained	Absolute structure: Flack (1983),
refinement	with 1335 Friedel pairs
	Flack parameter $= 0.27 (10)$

Table 1 omotria paramotors (Å °)

Selected	geometric	parameters	(A,).	
					-

C5 N1 N2 C9	170.2 (2)		
C4-C5-N1	123.7 (2)		
C6-C5-N1	117.3 (2)	C13-C8-N2	124.7 (2)
O2-C2-C1	123.3 (2)	C9-C8-N2	116.1 (2)
O2-C2-C3	117.3 (3)	O1-C7-C1	124.6 (3)
C5-N1	1.419 (3)	N1-N2	1.267 (3)
C2-O2	1.347 (3)	C8-N2	1.417 (3)
C1-C2	1.414 (4)	C7-O1	1.223 (4)

Table 2			
Hydrogen-bond	geometry ((Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{matrix} O2-H2\cdots O1\\ O2-H2\cdots O1^i \end{matrix}$	0.85 (2)	2.08 (4)	2.702 (4)	130 (5)
	0.85 (2)	2.29 (4)	2.923 (3)	132 (5)

Symmetry code: (i) $-x, y + \frac{1}{2}, -z + 2$.

All C-bonded H atoms were refined using a riding model, with C-H distances constrained to 0.93 Å and with $U_{iso} = 1.2U_{eq}(C)$. The H atom of the hydroxyl group was found in a difference map and refined with the O-H distance restrained to 0.83 (2) Å and $U_{iso}(H) =$ $1.5U_{\rm eq}({\rm O}).$

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS-II diffractometer (purchased under grant No. F279 of the University Research Fund).

References

Betteridge, D. & John, D. (1973). Analyst, 98, 390-411.

- Ersanli, C. C., Albayrak, Ç., Odabaşoğlu, M., Kazak, C. & Erdönmez, A. (2004). Acta Cryst. C60, 0455-0457.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Odabaşoğlu, M., Albayrak, Ç., Büyükgüngör, O. & Goesmann, H. (2003). Acta Cryst. C59, o234-o236.

Pollard, F. H., Hanson, P. & Geary, W. J. (1959). Anal. Chim. Acta, 20, 26-31. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of

Göttingen, Germany.

Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.

2974 independent reflections

Flack, H. D. (1983). Acta Cryst. A39, 876-881.